Giải bài 4.8 trang 54 SGK Toán 10 Kết nối tri thức tập 1
Cho tam giác đều ABC có cạnh bằng a. Tính độ dài của các vectơ \(\overrightarrow {AB} - \overrightarrow {AC} ,\;\overrightarrow {AB} + \overrightarrow {AC} .\)
Hướng dẫn giải chi tiết
Phương pháp giải
Với 3 điểm A, B, C bất kì, ta có: \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \)
Tứ giác MNPQ là hình bình hành thì \(\overrightarrow {MN} + \overrightarrow {MQ} = \overrightarrow {MP} \)
Hướng dẫn giải
\(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \Rightarrow \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = CB = a.\)
Dựng hình bình hành ABDC tâm O như hình vẽ.
Ta có:
\(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \)
\( \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)
Vì tứ giác ABDC là hình bình hành, lại có \(AB = AC = BD = CD = a\) nên ABDC là hình thoi.
\( \Rightarrow AD = 2AO = 2.AB.\sin B = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 .\)
Vậy \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right| = a\) và \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\sqrt 3 \).
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 4.6 trang 54 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.7 trang 54 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.9 trang 54 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.10 trang 54 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.7 trang 50 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.8 trang 50 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.9 trang 50 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.10 trang 51 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.11 trang 51 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.12 trang 51 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
-
Biết tứ giác \(ABCD\) là hình gì nếu \(\overrightarrow {AB} = \overrightarrow {DC} \) và \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right|\)?
bởi Thùy Trang 04/09/2022
Theo dõi (0) 1 Trả lời -
Hãy chứng minh rằng nếu \(\overrightarrow {AB} = \overrightarrow {CD} \) thì \(\overrightarrow {AC} = \overrightarrow {BD} \).
bởi thu trang 04/09/2022
Theo dõi (0) 1 Trả lời