Giải bài 2 trang 19 SBT Toán 10 Chân trời sáng tạo tập 1
Cho tập hợp \(A = \left\{ {1;2} \right\}\). Tìm tất cả các tập hợp B thỏa mãn \(A \cup B = \left\{ {1;2;3} \right\}\)
Hướng dẫn giải chi tiết Bài 2
Phương pháp giải
\(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)
Lời giải chi tiết
Vì \(\left\{ \begin{array}{l}3 \in A \cup B\\3 \notin A\end{array} \right.\)nên \(3 \in B\). Mà \(B \subset \left\{ {1;2;3} \right\}\). Do đó B có thể là:
\(\left\{ 3 \right\},\left\{ {1;3} \right\},\left\{ {2;3} \right\},\left\{ {1;2;3} \right\}\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.