OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Một hạt khối lượng \({{m}_{1}}\) chuyển động với vận tốc \(v\) đến va chạm hoàn toàn đàn hồi với hạt \({{m}_{2}}({{m}_{2}}

  bởi hà trang 24/02/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Áp dụng định luật bảo toàn động lượng, ta được:

    \({{m}_{1}}\overrightarrow{{{v}_{1}}}+{{m}_{2}}\overrightarrow{{{v}_{2}}}=m\overrightarrow{v}\) (1)

    Chiếu (1) lên hai trục tọa độ Ox và Oy, ta được:

    \(\left\{ \begin{align}

      & {{m}_{1}}{{v}_{1}}\cos \alpha +{{m}_{2}}{{v}_{2}}\cos \beta ={{m}_{1}}v \\

     & {{m}_{1}}{{v}_{1}}\sin \alpha +{{m}_{2}}{{v}_{2}}\sin \beta =0 \\

    \end{align} \right.\)

    \(\Leftrightarrow \left\{ \begin{align}

      & {{\left( {{m}_{2}}{{v}_{2}} \right)}^{2}}{{\cos }^{2}}\beta ={{\left( {{m}_{1}}v-{{m}_{1}}{{v}_{1}}\cos \alpha  \right)}^{2}} \\

     & {{\left( {{m}_{2}}{{v}_{2}} \right)}^{2}}{{\sin }^{2}}\beta ={{\left( {{m}_{1}}{{v}_{1}} \right)}^{2}}{{\sin }^{2}}\alpha  \\

    \end{align} \right.\)

    Cộng hai phương trình của hệ trên vế theo vế, ta được:

    \(m_{2}^{2}v_{2}^{2}+m_{1}^{2}{{v}^{2}}+m_{1}^{2}v_{1}^{2}-2m_{1}^{2}v{{v}_{1}}\cos \alpha \) (2)

    Mặt khác, theo định luật bảo toàn cơ năng, ta có:

    \(\frac{1}{2}{{m}_{1}}v_{1}^{2}+\frac{1}{2}{{m}_{2}}v_{2}^{2}=\frac{1}{2}{{m}_{1}}{{v}^{2}}\)

    \(\Leftrightarrow {{m}_{1}}{{v}^{2}}={{m}_{1}}v_{1}^{2}+{{m}_{2}}v_{2}^{2}\Leftrightarrow m_{2}^{2}v_{2}^{2}={{m}_{1}}{{m}_{2}}{{v}^{2}}-{{m}_{1}}{{m}_{2}}v_{1}^{2}\) (3)

    Từ (2) và (3): \(m_{1}^{2}{{v}^{2}}+m_{1}^{2}v_{1}^{2}-2m_{1}^{2}v{{v}_{1}}\cos \alpha ={{m}_{1}}{{m}_{2}}{{v}^{2}}-{{m}_{1}}{{m}_{2}}v_{1}^{2}\)

    \(\Leftrightarrow \left( {{m}_{1}}+{{m}_{2}} \right)v_{1}^{2}-2{{m}_{1}}v\cos \alpha {{v}_{1}}+\left( {{m}_{1}}-{{m}_{2}} \right){{v}^{2}}=0\) (4)

    Để bài toán cơ ý nghĩa, phương trình bậc hai theo \({{v}_{1}}\) phải có nghiệm, tức là:

    \({\Delta }'=m_{1}^{2}{{v}^{2}}{{\cos }^{2}}\alpha -\left( m_{1}^{2}-m_{2}^{2} \right){{v}^{2}}\ge 0\)

    \(\Rightarrow {{\cos }^{2}}\alpha =1-{{\sin }^{2}}\alpha \ge 1-\frac{m_{2}^{2}}{m_{1}^{2}}\Rightarrow \sin \alpha \le \frac{{{m}_{2}}}{{{m}_{1}}}\)

    Từ đó: \(\alpha ={{\alpha }_{\max }}\Leftrightarrow \sin \alpha =\sin {{\alpha }_{\max }}=\frac{{{m}_{2}}}{{{m}_{1}}}\Rightarrow \alpha ={{\alpha }_{\max }}=\arcsin \frac{{{m}_{2}}}{{{m}_{1}}}\)

    Trường hợp: \({{m}_{1}}={{m}_{2}}\Rightarrow \alpha =\frac{\pi }{2},\overrightarrow{{{v}_{1}}}\bot \overrightarrow{v}\)

    Vậy: góc lệch lớn nhất của hạt \({{m}_{1}}\) so với phương ban đầu sau va chạm là \({{a}_{\max }}=\arcsin \frac{{{m}_{2}}}{{{m}_{1}}}\)

      bởi Lê Thánh Tông 24/02/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF