OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Một chiếc kim hình trụ bằng thép có bôi một lớp mỏng dầu nhờn ở mặt ngoài được đặt nằm ngang và nổi trên mặt nước. Hãy xác định đường kính lớn nhất của chiếc kim sao cho độ chìm sâu trong nước của chiếc kim bằng bán kính của nó. Đường kính chiếc kim bằng 5% độ dài của nó. Cho biết khối lượng riêng của thép là 7800 kg/\({m^3}\) và của nước là 1000 kg/\({m^3}\) hệ số căng bề mặt của nước là 0,072 N/m, lấy g ≈ 9,8 m/\({s^2}\).

  bởi Quynh Anh 03/01/2022
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Muốn chiếc kim nổi trên mặt nước thì hiệu số giữa trọng lượng P và lực đẩy Ác-si-mét FA tác dụng lên chiếc kim phải lớn hơn hoặc bằng lực căng bề mặt Fc của phần mặt nước đỡ chiếc kim nổi trên nó.

    P – FA > Fc

    Gọi d là bán kính, l là chiều dài và D là khối lượng riêng của chiếc kim, còn D0 và σ là khối lượng riêng và hệ số căng bề mặt của nước.

    Thay  \(P = mg = D\displaystyle{{\pi {d^2}} \over 4}\lg ,{F_c} = \sigma 2\left( {d + l} \right)\)

    và \({F_A} = \displaystyle{D_0}{1 \over 2}{{\pi {d^2}} \over 4}\lg \) (trọng lượng nước bị một nửa phần chiếc kim chìm

    trong nước chiếm chỗ), đồng thời chú ý rằng d = 0,05l hay l = 20d, ta tìm được :

    \(D\displaystyle{{\pi {d^2}} \over 4}20dg - {D_0}{{\pi {d^2}} \over 8}20dg \ge \sigma 2\left( {d + 20d} \right)\)

    Từ đó suy ra :   \(d \ge \sqrt {\displaystyle{{16,8\sigma } \over {\pi g\left( {2D - {D_0}} \right)}}} \)

    Thay số, ta được :  \({d_{\max }} = \sqrt {\displaystyle{{16,8.0,072} \over {3,14.9,8.\left( {2.7800 - 1000} \right)}}} \approx 1,64mm\)

      bởi Bao Nhi 04/01/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF