OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Với các số \(a,\,b,\,c,\,d\) dương, chứng minh: \(F = \dfrac{a}{{b + c}} + \dfrac{b}{{c + d}} + \dfrac{c}{{d + a}} + \dfrac{d}{{a + b}} \ge 2\)

Với các số \(a,\,b,\,c,\,d\) dương, chứng minh: \(F = \dfrac{a}{{b + c}} + \dfrac{b}{{c + d}} + \dfrac{c}{{d + a}} + \dfrac{d}{{a + b}} \ge 2\)

  bởi Phung Hung 14/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(\begin{array}{l}F = \dfrac{a}{{b + c}} + \dfrac{b}{{c + d}} + \dfrac{c}{{d + a}} + \dfrac{d}{{a + b}}\\\;\;\; = \left( {\dfrac{a}{{b + c}} + \dfrac{c}{{d + a}}} \right) + \left( {\dfrac{b}{{c + d}} + \dfrac{d}{{a + b}}} \right)\\\;\;\; = \dfrac{{a\left( {d + a} \right) + c\left( {b + c} \right)}}{{\left( {b + c} \right)\left( {d + a} \right)}} + \dfrac{{b\left( {a + b} \right) + d\left( {c + d} \right)}}{{\left( {c + d} \right)\left( {a + b} \right)}}\\\;\;\; = \dfrac{{{a^2} + {c^2} + ad + bc}}{{\left( {b + c} \right)\left( {d + a} \right)}} + \dfrac{{{b^2} + {d^2} + ab + cd}}{{\left( {c + d} \right)\left( {a + b} \right)}}.\end{array}\)

    Áp dụng bất đẳng thức Cô-si cho hai số \(x\) và \(y\)  dương ta có:\({\left( {x + y} \right)^2} \ge 4xy.\)

    Áp dụng bất đẳng thức trên cho hai số \(\left( {b + c} \right)\) và \(\left( {d + a} \right)\) ta có:

    \(\begin{array}{l}\;\;\;\;{\left[ {\left( {b + c} \right) + \left( {a + d} \right)} \right]^2} \ge 4\left( {b + c} \right)\left( {a + d} \right)\\ \Leftrightarrow \left( {b + a} \right)\left( {a + d} \right) \le \dfrac{{{{\left( {a + b + c + d} \right)}^2}}}{4}.\end{array}\)

    Tương tự ta có: \(\left( {c + d} \right)\left( {a + b} \right) \le \dfrac{{{{\left( {a + b + c + d} \right)}^2}}}{4}.\)

    \(\begin{array}{l} \Rightarrow F \ge \dfrac{{{a^2} + {c^2} + ad + bc}}{{\dfrac{1}{4}\left( {b + c + d + a} \right)}} + \dfrac{{{b^2} + {d^2} + ab + cd}}{{\dfrac{1}{4}{{\left( {c + d + a + b} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \dfrac{{4\left( {{a^2} + {b^2} + {c^2} + {d^2} + ab + bc + cd + ad} \right)}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \dfrac{{2\left( {{a^2} + {b^2} + {c^2} + {d^2} + 2ab + 2bc + 2cd + 2da + 2bd + 2ac} \right) + 2\left( {{a^2} + {b^2} + {c^2} + {d^2} - 2bd - 2ca} \right)}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \dfrac{{2{{\left( {a + b + c + d} \right)}^2} + 2\left[ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} \right]}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = 2 + \dfrac{{2\left[ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} \right]}}{{{{\left( {a + b + c + d} \right)}^2}}}.\end{array}\)

    Ta có: \({\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} \ge 0\)

    \( \Rightarrow F \ge 2.\)

    Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a - c = 0\\b - d = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = c\\b = d\end{array} \right..\)

    Vậy \(F \ge 2\;\;\left( {dpcm} \right).\)

      bởi Huong Hoa Hồng 14/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF