OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tính GTBT x^7+1/x^7 biết x+1/x=a

Cho x>0 và \(x+\dfrac{1}{x}=a\) .Tính GTBT:C=\(x^7+\dfrac{1}{x^7}\)

  bởi minh thuận 30/11/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(x+\dfrac{1}{x}=a\Rightarrow\left(x+\dfrac{1}{x}\right)^3=a^3\)

    \(\Rightarrow x^3+\dfrac{1}{x^3}+3x\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=a^3\)

    \(\Leftrightarrow x^3+\dfrac{1}{x^3}=a^3-3a\)

    \(x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2x\dfrac{1}{x}=a^2-2\)

    \(x^4+\dfrac{1}{x^4}=\left(x^2\right)^2+\left(\dfrac{1}{x^2}\right)^2=\left(x^2+\dfrac{1}{x^2}\right)^2-2x^2\dfrac{1}{x^2}=\left(a^2-2\right)^2-2\)\(\Rightarrow\left(x^3+\dfrac{1}{x^3}\right)\left(x^4+\dfrac{1}{x^4}\right)=\left(a^3-3a\right)\left(a^2-2\right)^2\)\(\Leftrightarrow x^7+\dfrac{x^3}{x^4}+\dfrac{x^4}{x^3}+\dfrac{1}{x^7}=\left(a^3-3a\right)\left(a^2-2\right)^2\)\(\Rightarrow x^7+\dfrac{1}{x^7}=\left(a^3-3a\right)\left(a^2-2\right)^2-a\)

    Thuộc kết quả mấy cái bài như thế này mất:(

      bởi Đồng Việt Thắng 30/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF