OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm GTLN của biểu thức A=-x^2-2x+9

1.TÌM GTLN

A=-x^2-2x+9

B=-9x^2+6x+25

C=-x^2+x+1

D=-2x^2+3x+1

E=-25x^2-10x+7

2.Tìm gTLN

A=9x^2+6x+4

B=4x^2+4x+12

C=x^2+x+3

D=2x^2+3x+1

E=64x^2+16x+3

  bởi minh thuận 28/02/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bài 1:

    \(A=-x^2-2x+9\)

    \(A=-\left(x^2+2x-9\right)\)

    \(A=-\left(x^2+2x+1-10\right)\)

    \(A=-\left(x+1\right)^2+10\)

    \(-\left(x+1\right)^2\le0\) với mọi x

    \(\Rightarrow-\left(x+1\right)^2+10\le10\)

    \(\Rightarrow Amax=10\Leftrightarrow x=-1\)

    \(B=-9x^2+6x+25\)

    \(B=-\left(9x^2-6x-25\right)\)

    \(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)

    \(B=-\left(3x-1\right)^2+26\)

    \(-\left(3x-1\right)^2\le0\) với mọi x

    \(\Rightarrow-\left(3x-1\right)^2+26\le26\)

    \(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)

    \(C=-x^2+x+1\)

    \(C=-\left(x^2-x-1\right)\)

    \(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)

    \(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)

    \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x

    \(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

    \(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)

    \(D=-2x^2+3x+1\)

    \(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)

    \(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)

    \(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)

    \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x

    \(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)

    \(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)

    \(E=-25x^2-10x+7\)

    \(E=-\left(25x^2+10x-7\right)\)

    \(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)

    \(E=-\left(5x+1\right)^2+8\)

    \(-\left(5x+1\right)^2\le0\) với mọi x

    \(\Rightarrow-\left(5x+1\right)^2+8\le8\)

    \(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)

    Bài 2:

    \(A=9x^2+6x+4\)

    \(A=\left(3x\right)^2+2.3x+1+3\)

    \(A=\left(3x+1\right)^2+3\)

    \(\left(3x+1\right)^2\ge0\) với mọi x

    \(\Rightarrow\left(3x+1\right)^2+3\ge3\)

    \(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)

    \(B=4x^2+4x+12\)

    \(B=\left(2x\right)^2+2.2x+1+11\)

    \(B=\left(2x+1\right)^2+11\)

    \(\left(2x+1\right)^2\ge0\) với mọi x

    \(\Rightarrow\left(2x+1\right)^2+11\ge11\)

    \(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)

    \(C=x^2+x+3\)

    \(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)

    \(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)

    \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x

    \(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

    \(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

    \(D=2x^2+3x+1\)

    \(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)

    \(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)

    \(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

    \(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x

    \(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

    \(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)

    \(E=64x^2+16x+3\)

    \(E=\left(8x\right)^2+2.8x+1+2\)

    \(E=\left(8x+1\right)^2+2\)

    \(\left(8x+1\right)^2\ge0\) với mọi x

    \(\Rightarrow\left(8x+1\right)^2+2\ge2\)

    \(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)

      bởi Nguyễn Phương Mai 28/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF