OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm các gt nhỏ nhất để biểu thức:

Tìm các gt nhỏ nhất để biểu thức: \(P=x^2+2y^2+2xy-6x-8y+2028?\)

  bởi hoàng duy 16/06/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(P=x^2+2y+2xy-6x-8y-2028\\ =x^2+y^2+y^2+2xy-6x-8y+2028\\ =\left(x^2+2xy+y^2\right)+y^2-6x-8y+2028\\ =\left(x+y\right)^2+y^2-6x-6y-2y+2028\\ =x+y^2+\left(-6-6y\right)+y^2-2y+1+2027\\ =\left(x+y\right)^2-6\left(x+y\right)+\left(y-1\right)^2+2027\\ =\left(x+y\right)^2-2\left(x+y\right)^3+9+\left(y-1\right)^2+2018\)

    \(=\left[\left(x+y\right)^2-2\left(x+y\right)-3+9\right]+9+\left(y-1\right)^2+2018\\ =\left(x+y-3\right)^2+\left(y-1\right)^2+2018\\ \forall x,y\left(x-y-3\right)^2\ge0;\left(y-1\right)^2\ge0\\ =>D=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)

    Vậy giá trị nhỏ nhất của P=2018

    Xấu ''='' xảy ra khi: \(\left\{{}\begin{matrix}\left(x+y-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+1-3=0\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

      bởi Tuyên Nông 16/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF