OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải phương trình (3x-4)^2 = 9(x-1)(x+1)

Giải các pt sau:

A). (3x-4)2 = 9(x-1)(x+1)

B). (4x-5)2 -4(x-2)2 =0

C). |X2 - x| = -2x

D). (X+3)/(x-3)+(48x3)/(9-x2)=(x-3)/(x+3)

  bởi Kim Ngan 24/12/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • c. |x2-x|= -2x

    Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)

    => x2-x= -2x

    <=> x2-x+2x=0

    <=> x2+x=0

    <=> x(x+1)=0

    <=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))

    Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1

    => x-x2= -2x

    <=> x-x2+2x=0

    <=> 3x-x2=0

    <=> x(3-x)=0

    x=0 (thỏa mãn điều kiện x<1)

    hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)

    Vậy S=\(\left\{0\right\}\)

    d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

    ĐKXĐ: \(x\ne\pm3\)

    Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

    <=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

    => x2+6x+9-48x3=x2-6x+9

    <=> 12x-48x3=0

    <=> 12x(1-4x2)=0

    <=> 12x(1-2x)(1+2x)=0

    <=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)

    Vậy S=\(\left\{0;\pm0,5\right\}\)

      bởi Nguyễn Thị Thùy Linh 24/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF