OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài toán bằng cách lập phương trình: Một xe máy và một ô tô cùng khởi hành từ tỉnh A đi đến tỉnh B. Xe máy đi với vận tốc 30km/h, ô tô đi với vận tốc 40km/h. Sau khi đi được nửa quãng đường AB, ô tô tăng vận tốc thêm 5km/h trên quãng đường còn lại, do đó nó đến tỉnh B sớm hơn xe máy 1 giờ 10 phút. Hãy tính độ dài quãng đường AB.

Giải bài toán bằng cách lập phương trình:  Một xe máy và một ô tô cùng khởi hành từ tỉnh A đi đến tỉnh B. Xe máy đi với vận tốc 30km/h, ô tô đi với vận tốc 40km/h. Sau khi đi được nửa quãng đường AB, ô tô tăng vận tốc thêm 5km/h trên quãng đường còn lại, do đó nó đến tỉnh B sớm hơn xe máy 1 giờ 10 phút. Hãy tính độ dài quãng đường AB.

  bởi Đan Nguyên 14/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đổi 1 giờ 10 phút = \(\dfrac{7}{6}\) giờ

    Gọi quãng đường AB dài \(x\,\,\,\left( {km} \right),\,\,\,\left( {x > 0} \right).\)

    Thời gian xe máy đi hết quãng đường AB là \(\dfrac{x}{{30}}\) (giờ).

    Thời gian ô tô đi nửa đầu quãng đường AB là \(\dfrac{x}{2}:40 = \dfrac{x}{{80}}\) (giờ)

    Thời gian ô tô đi nửa sau quãng đường AB là \(\dfrac{x}{2}:\left( {40 + 5} \right) = \dfrac{x}{{90}}\) (giờ)

    Do ô tô đến tỉnh B sớm hơn xe máy 1 giờ 10 phút nên ta có phương trình:

    \(\begin{array}{l}\dfrac{x}{{30}} = \dfrac{7}{6} + \dfrac{x}{{80}} + \dfrac{x}{{90}}\\ \Leftrightarrow \dfrac{{24x}}{{720}} = \dfrac{{840}}{{720}} + \dfrac{{9x}}{{720}} + \dfrac{{8x}}{{720}}\\ \Leftrightarrow 24x = 840 + 9x + 8x\\ \Leftrightarrow 24x - 9x - 8x = 840\\ \Leftrightarrow 7x = 840\\ \Leftrightarrow x = 120\,\,\,\,\left( {tm} \right)\end{array}\)

    Vậy quãng đường AB dài 120km.

      bởi Lan Anh 15/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF