OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh (x+a)(x+b)=x^2+(a+b)x+ab

Chúng minh các hằng đẳng thức

a) \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

b) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)

  bởi hi hi 17/11/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • a) Biến đổi vế trái ta có:

    \(\left(x+a\right)\left(x+b\right)\)

    = \(x^2+xb+xa+ab\)

    = \(x^2+\left(a+b\right)x+ab=VP\)

    Vậy đẳng thức đc CM

    b) Biến đổi VT ta có:

    \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

    = \(\left(x^2+xa+xb+ab\right)\left(x+c\right)\)

    = \(x^3+x^2a+x^2b+x^2c+xab+xac+xbc+abc\)

    = \(x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)= VP

    Vậy đẳng thức đc CM

      bởi Nguyễn Hoàng Dân 17/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF