OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh (x^2+x-1)10+(x^2 - x +1)^10-2 chia hết cho x-1

Cmr: đa thức (x2+x-1)10+(x2 - x +1)10-2 chia hết cho x-1

  bởi Dương Quá 25/12/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Nhận thấy nếu đa thức \(g\left(x\right)\) có nghiệm \(x=a\) thì đa thức \(g\left(x\right)\) có thể được viết thành \(g\left(x\right)=\left(x-a\right)f\left(x\right)\) . Từ đó suy ra đa thức \(g\left(x\right)\) chia hết cho đa thức \(x-a\).
    Ngược lại nếu đa thức \(g\left(x\right)\) có thể biểu diễn dưới dạng \(g\left(x\right)=\left(x-a\right)f\left(x\right)\) thì \(g\left(x\right)\) có nghiệm \(x=a\).
    Áp dụng vào bài toán ta có thay \(x=1\) vào \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) ta có:
    \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}-2=1+1-2=0\).
    vậy \(x=1\) là nghiệm của \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) nên :
    \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2=f\left(x\right)\left(x-1\right)\). (trong đó \(f\left(x\right)\) là đa thức có bậc dương).
    Suy ra \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) chia hết cho \(x-1\).

      bởi Nguyễn Trường 25/12/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF