OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh tam giác ABE là tam giác đều biết hình vuông ABCD có E nằm trong hình vuông và tam giác ECD cân

Cho hình vuông ABCD, điểm E nằm trong hình vuông sao cho tam giác ECD cân có góc đáy bằng 15o.

CMR: tam giác ABE là tam giác đều

  bởi Phong Vu 31/05/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • A B C C E

    Ta có : \(\widehat{ADC}=\widehat{ADE}+\widehat{EDC}\)

    => \(90^{^O}=\widehat{ADE}+15^{^O}\)

    => \(\widehat{ADE}=75^{^O}\)

    Tương tự ta cũng có : \(\widehat{BCE}=75^o\)

    Xét \(\Delta ADE\)\(\Delta BCE\) có :

    AD = BC (do ABCD à hình vuông)

    \(\widehat{ADE}=\widehat{BCE}\left(=75^o\right)\)

    \(DE=EC\) (do tam giác ECD cân tại E- gt)

    => \(\Delta ADE\) = \(\Delta BCE\) (c.g.c)

    => AE = BE (2 cạnh tương ứng)

    Mà : AD = AE

    => \(\Delta ADE\) cân tại A

    Xét \(\Delta ADE\) ta có :

    \(\widehat{ADE}=\widehat{AED}=75^o\) (tính chất tam giác cân)

    => \(\widehat{DAE}=180^{^O}-\left(\widehat{ADE}+\widehat{AED}\right)\)

    => \(\widehat{DAE}=180^{^O}-2.75^{^O}=30^{^O}\)

    Chứng minh tương tự ta có : \(\widehat{CBE}=30^o\)

    Có : \(\widehat{ABE}=\widehat{ABC}-\widehat{CBE}=90^{^O}-30^{^O}=60^{^O}\)

    \(\widehat{BAE}=\widehat{BAD}-\widehat{EAD}=90^{^O}-30^{^O}=60^{^O}\)

    Xét \(\Delta ABE\) có :

    \(\widehat{ABE}+\widehat{BAE}+\widehat{AEB}=180^{^O}\)

    => \(\widehat{AEB}=180^{^O}-2.60^{^O}=60^{^O}\)

    Thấy : \(\widehat{ABE}=\widehat{BAE}=\widehat{AEB}=60^o\)

    => \(\Delta ABE\) là tam giác đều (đpcm)

      bởi Lê nhật Truong 01/06/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF