OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh P= (x^2+1)(y^2+1)(z^2+1) là bình phương của 1 số hữu tỉ biết xy + yz + zx = -1

1. Cho xy + yz + zx = -1 và x,y,z ∈Q. Chứng minh: P= (x2+1)(y2+1)(z2+1) là bình phương của 1 số hữu tỉ.

  bởi con cai 30/11/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Mình nghĩ đề cho : \(xy+yz+zx=1\) .

    Ta có : \(P=\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)

    \(=\left(x^2+xy+yz+zx\right)\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)\)

    \(=\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)\)

    \(=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)

    Vậy P là bình phương của một số hửu tỉ .

      bởi Lê huyền Trang 30/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF