OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh n^4 - 4n^3 - 4n^2 + 16n chia hết cho 384 với mọi n là số chẵn

CMR: n4 - 4n3 - 4n2 + 16n chia hết cho 384 với mọi n là số chẵn; n > 2

 

  bởi Bi do 29/04/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4  n = 2k ( k  N, k > 2)  A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4.  k(k – 2)(k – 1)(k + 1)  8  A  16.8 hay A  128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A  3 mà (3; 128) = 1 nên A  384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4

    bạn chứng minh tương tự như trên nhé tha số thôi leu

      bởi Nguyễn Quốc Bảo 29/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF