OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh EF//CD biết hình thang ABCD có E, F là trung điểm của BD và AC

1. cho hình thang ABCD (AB//CD). gọi E, F lần lượt là trung điểm của BD và AC.

a) c/m EF//CD

b) c/m EF = \(\dfrac{CD-AB}{2}\)

2. tìm GTNN của

b) B = x2 - 3x + 5

c) C = x2 -x+6

d) M = 4x2 -4x +4

e) N = x2 -x

3. c/m rằng a=b=c nếu có một trong các điều kiện sau

a) (a+b+c)2 = 3(a2 + b2 + c2)

b) (a+b+c)2 = 3(ab+bc+ca)

  bởi Mai Hoa 05/01/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bài 2,

    \(B=x^2-3x+5\)

    \(=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}\)

    \(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

    Vậy : Min B = \(\dfrac{11}{4}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

    \(c,x^2-x+6=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{23}{4}\)

    \(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\)

    vậy Min C = \(\dfrac{23}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

    \(d,M=4x^2-4x+4=\left(4x^2-4x+1\right)+3\)

    \(=\left(2x-1\right)^2+3\forall x\)

    vậy Min M = 3 khi \(2x-1=0\Rightarrow x=\dfrac{1}{2}\)

    \(e,x^2-x=\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}\)

    \(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall x\)

    vậy Min N = \(-\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

      bởi Le huynh an An 05/01/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF