OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh biểu thức A=x^2+6x+15 luôn dương

Chứng minh các biểu thức sau luôn có giá trị dương

a)A=x^2+6x+15

b)B=4x^2+4x+11

Chứng minh các biểu thức sau luôn có giá trị âm

a)-9x^2+12x-15

b)-5-(x-1)(x+2)

  bởi can chu 26/10/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(a,A=x^2+6x+15\)

    \(=\left(x^2+6x+9\right)+6\)

    \(=\left(x+3\right)^2+6\)

    Ta có : ( x + 3 )2 ≥ 0 với mọi x

    => ( x + 3 )2 + 6 ≥ 6 > 0 với mọi x

    => A > 0 ( đpcm )

    \(b,B=4x^2+4x+11\)

    \(=\left(4x^2+4x+1\right)+10\)

    \(=\left(2x+1\right)^2+10\ge10>0\forall x\left(đpcm\right)\)

    ( giải thích chi tiết thì tương tự câu a nhé bn Ttqminh2005

    a, \(-9x^2+12x-15\)

    \(=-\left(9x^2-12x+4\right)-11\)

    \(=-\left(3x-2\right)^2-11\)

    Ta có : \(-\left(3x-2\right)^2\le0\Rightarrow-\left(3x-2\right)^2-11\le-11< 0\forall x\) ( đpcm)

    \(b,-5-\left(x-1\right)\left(x+2\right)\)

    \(=-5-x^2-x+2\)

    \(=-\left(x^2+x+3\right)\)

    \(=-\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{11}{4}\right]\)

    \(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\) < 0 ( đpcm )

      bởi Vương Thiên Băng 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF