OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh BH vuông góc CN biết HM vuông góc với BC, N là giao điểm của AB và MH

cho △ABC có góc A = 90 độ và tia phân giác BH. Kẻ HM vuông góc với BC. Gọi N là giao điểm của AB và MH. Chứng minh:

a) △ABH = △MHB

b) BH là đường trung trực của AM

c) AM //CN

d0 BH vuông góc CN

  bởi ngọc trang 30/03/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

    a)

    Ta có: \(\left\{\begin{matrix} \widehat{BHA}=90^0-\widehat{B_1}\\ \widehat{BHM}=90^0-\widehat{B_2}\end{matrix}\right.\). Mà \(\widehat{B_1}=\widehat{B_2}\) do $BH$ là tia phân giác góc $B$ nên \(\widehat{BHA}=\widehat{BHM}\)

    Xét tam giác $ABH$ và $MBH$ có:

    \(\left\{\begin{matrix} \widehat{B_1}=\widehat{B_2}\\ \widehat{BHA}=\widehat{BHM}\\ \text{BH chung}\end{matrix}\right.\)\(\Rightarrow \triangle ABH=\triangle MBH(g.c.g)\)

    b)

    Vì \(\triangle ABH=\triangle MBH\) nên \(BA=BM\) và \(HA=HM\)

    Do đó \(BH\) là đường trung trực của $AM$

    c)

    Xét tam giác $BNM$ và $BCA$ có:

    \(\left\{\begin{matrix} \widehat{BMN}=\widehat{BAC}=90^0\\ \angle \text{B chung}\end{matrix}\right.\) \(\Rightarrow \triangle BNM\sim \triangle BCA(g.g)\)

    \(\Rightarrow \frac{BN}{BC}=\frac{BM}{BA}\). Mà \(BM=BA\Rightarrow BN=BC\)

    Do đó: \(\frac{BA}{BN}=\frac{BM}{BC}\). Theo định lý Thales đảo suy ra \(AM\parallel CN\)

    d)

    Xét tam giác $BNC$ có \(CA\perp BN, NM\perp BC\) và \(CA\cap MN=H\) nên $H$ là trực tâm của tam giác $BNC$

    Do đó: \(BH\perp NC\)

      bởi Khuất Mai 30/03/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF