OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh: a5-a chia hết cho 30 với a\(\in Z\) Chứng minh rằng:

Chứng minh: a5-a chia hết cho 30 với a\(\in Z\)

Chứng minh rằng: x5-x+2 không là số chính phương với mọi x\(\in Z\)

Chứng minh rằng nếu a,b, c là các số hữu tỉ và ab+bc+ac=1 thì (1+a2)(1+b2)(1+c2) bằng bình phương của số hữu tỉ

  bởi Thùy Trang 25/08/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5

    \(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)

    \(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm

      bởi Dương Như 04/07/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF