OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh a+b+c=0 biết a^3+b^3+c^3=3ab và a, b, c đôi một khác nhau

Cho \(a^3+b^3+c^3=3ab\) và a+b+c đôi một khác nhau.

Cmr:a+b+c=0

  bởi Nguyễn Sơn Ca 30/11/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

    =>\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

    Do đó:

    \(a^3+b^3+c^3=3ab\)

    =>\(a^3+b^3+c^3-3ab=0\)

    =>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3ab=0\)

    =>\(\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

    =>\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\left(a+b+c\right)\right]=0\)

    =>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

    =>\(\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)

    =>\(\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\right]=0\)

    =>\(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b+c\right)^2\right]=0\)

    Do a,b,c đôi một khác nhau nên a-b\(\ne\)0, a-c\(\ne\)0, b-c\(\ne\)0

    =>\(\left(a-b\right)^2>0;\left(a-c\right)^2>0;\left(b-c\right)^2>0\)

    Suy ra: a+b+c=0 +>Điều phải chứng minh

      bởi Kiệt GT 30/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF