OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh 1/(a+b-c)+1/(b+c-a)+1/(c+a-b)>=1/a+1/b+1/c

a,b,c là số đo 3 cạnh của 1 tam giác.Cm 1/(a+b-c)+1/(b+c-a)+1/(c+a-b)>=1/a+1/b+1/c

  bởi Quynh Nhu 30/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Áp dụng BĐT Cauchy-Schwarz dạng phân số :

    \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\geq \frac{(1+1)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

    Tương tự:

    \(\frac{1}{a+b-c}+\frac{1}{c+a-b}\geq \frac{2}{a}\)

    \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\geq \frac{2}{c}\)

    Cộng theo vế: \(2\left (\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\geq 2\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

    \(\Leftrightarrow \frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

    Dấu bằng xảy ra khi $a=b=c$

      bởi Đức Nghĩa 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF