OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6

Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8 cm

a) Cm : \(\Delta\)HBA \(\sim\) \(\Delta\)ABC

b) Tính BC, AH, BH

c) Cm: AH\(^2\) = HB.HC

d) Gọi I và K lần lượt là hình chiếu của điểm H lên cạnh AB, AC

Cm AI.AB = AK.AC

  bởi thanh duy 14/04/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hỏi đáp Toán

    a. Xét \(\Delta HBA\)\(\Delta ABC\) có:

    \(\widehat{B}\left(chung\right)\)

    \(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)

    Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)

    b. Vì \(\Delta ABC\) vuông tại A
    => \(AB^2+AC^2=BC^2\)

    hay \(6^2+8^2=BC^2\)

    => \(\sqrt{BC}=\sqrt{100}\)

    => BC = 10cm

    \(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

    => \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

    hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)

    => AH = 4,8 cm

    \(\Delta ABH\) vuông tại H

    => \(BH^2+AH^2=AB^2\)

    hay \(BH^2=6-4,8\)

    => BH = 1,2 cm

    c. Xét \(\Delta ABC\)\(\Delta HAC\) có:

    \(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

    \(\widehat{C}\left(chung\right)\)

    Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)

    \(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

    => \(\Delta HAC\infty\Delta HBA\)

    => \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

    hay \(AH^2=HB.HC\)

      bởi Hồ Nhật Linh 15/04/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF