OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho tam giác ABC có ba góc nhọn Đường cao AF ,

Cho tam giác ABC có ba góc nhọn Đường cao AF , BE cắt nhau tại H .Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC.Tia Ax và By cắt nhau tại K .

a) Tứ giác AHBK là hình gì ? Tại sao ?

b) Chứng minh : Δ HAE đồng dạng với Δ HBF.

c) Chứng minh : CE.CA=CF.CB

d) ΔABC cần thêm điều kiện gì để tứ giác AHBK là hình thoi.

  bởi na na 16/06/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • A H B E H F C K

    a. Ta có:

    BE ⊥ AC

    KA ⊥ AC

    => BE // KA hay BH //KA (1)

    Ta lại có:

    KB ⊥ BC

    AF ⊥ BC

    => KB // AF hay KB // AH (2)

    Từ (1) (2) suy ra: AHBK là hình bình hành

    b.

    Xét ▲HAE và ▲HBF có:

    góc AHE = BHF ( đối đỉnh)

    Góc: E = F = 90o

    Do đó: ▲HAE ~ ▲ HBF (g.g)

    c.

    Xét ▲CEB và ▲CFA có:

    Góc C chung

    Góc E = F = 90o

    Do đó: ▲CEB~▲CFA (g.g)

    => \(\dfrac{CE}{CF}=\dfrac{CB}{CA}\Rightarrow CE.CA=CF.CB\)

      bởi Nguyen Thi Lan Anh 16/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF