OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho \(0\le a,b,c\le2\)và \(a+b+c=3\). Tìm Min, Max:

Cho \(0\le a,b,c\le2\)\(a+b+c=3\). Tìm Min, Max: \(P=^2+b^2+c^2\)

  bởi Nguyễn Trọng Nhân 16/06/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • *)Min: Áp dụng BĐT Cauchy-Schwarz ta có:

    \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

    \(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

    \(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\)\(\Rightarrow P\ge3\)

    Đẳng thức xảy ra khi \(a=b=c=1\)

    *)Max: Không mất tính tổng quát giả sử \(a\ge b\ge c\)

    Đặt \(f\left(x\right)=x^2\) là hàm lồi trên \((0;2)\) và thỏa \(a+b+c=3\) nên \((2;1;0) \succ(a,b,c)\)

    Áp dụng BĐT Karamata ta có:

    \(a^2+b^2+c^2\le2^2+1^2+0^2=5\)

    Đẳng thức xảy ra khi \(a=2;b=1;c=0\)

      bởi Đặng Yến 16/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF