OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài 3.5 trang 8 sách bài tập toán 8 tập 1

Bài 3.5 - Bài tập bổ sung (Sách bài tập - trang 8)

Chứng minh hằng đẳng thức :

                     \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

  bởi Nguyễn Minh Minh 16/10/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

    <=>(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a) (1)

    Ta có:(a+b+c)3-a3-b3-c3=[(a+b+c)3-a3]-(b3+c3)

    =(a+b+c-a)(a2+b2+c2+2ab+2bc+2ca+a2+ab+ac+a2)-(b+c)(b2-bc+c2)

    =(b+c)(3a2+b2+c2+3ab+3ac+2bc)-(b+c)(b2-bc+c2)

    =(b+c)(3a2+b2+c2+3ab+3ac+2bc-b2+bc-c2)

    =(b+c)(3a2+3ab+3ac+3bc)

    =3(b+c)](a2+ab)+(ac+bc)]

    =3(b+c)[a(a+b)+c(a+b)]

    =3(b+c)(a+c)(a+b)

    =>(1) đúng => đpcm

      bởi Nguyễn bảo Hân 16/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF