OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Xét tính chẵn – lẻ của hàm số \(f(x) = \dfrac{{\sqrt {5 + 2x} - \sqrt {5 - 2x} }}{x}\).

  bởi Quế Anh 19/02/2021
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hàm số \(f(x) = \dfrac{{\sqrt {5 + 2x}  - \sqrt {5 - 2x} }}{x}\) được xác định khi và chỉ khi

    \(\left\{ \begin{array}{l}5 + 2x \ge 0\\5 - 2x \ge 0\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - \dfrac{5}{2}\\x \le \dfrac{5}{2}\\x \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{5}{2} \le x \le \dfrac{5}{2}\\x \ne 0\end{array} \right.\)

     

    Vậy hàm số có tập xác định \(D = \left[ { - \dfrac{5}{2};0} \right) \cup \left( {0;\dfrac{5}{2}} \right]\) .

    Với mọi \(x \in D\) ta có

    \( - x \in D\)

    \(\begin{array}{l}f\left( { - x} \right) = \dfrac{{\sqrt {5 - 2x}  - \sqrt {5 + 2x} }}{{ - x}}\\{\rm{         }} = \dfrac{{\sqrt {5 + 2x}  - \sqrt {5 - 2x} }}{x} = f(x)\end{array}\)

    Vậy hàm số \(f(x) = \dfrac{{\sqrt {5 + 2x}  - \sqrt {5 - 2x} }}{x}\) là hàm số chẵn.

      bởi Lê Chí Thiện 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF