OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Xác định độ dài các trục, tọa độ tiêu điểm và tọa độ các đỉnh của phương trình sau: \(4x^2+ 9y^2= 36.\)

  bởi bich thu 20/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Chia \(2\) vế của phương trình cho \(36\) ta được: \(\dfrac{x^{2}}{9}+ \dfrac{y^{2}}{4}= 1\)

    Ta có:

    \(\begin{array}{l}
    {a^2} = 9 \Rightarrow a = 3\\
    {b^2} = 4 \Rightarrow b = 2\\
    {c^2} = {a^2} - {b^2} = 5 \Rightarrow c = \sqrt 5
    \end{array}\)

    +) Độ dài trục lớn \(2a = 6\)

    +) Độ dài trục nhỏ \(     2b = 4\).

    +) Tiêu điểm \(F_1(-\sqrt5 ; 0)\) và \(F_2(\sqrt5 ; 0)\)

     +) Các đỉnh \(A_1(-3; 0), A_2(3; 0),  B_1(0; -2),  B_2(0; 2)\).

      bởi hai trieu 20/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF