OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Xác định các giá trị của tham số \(m\) để bất phương trình sau vô nghiệm \(\left( {m + 2} \right){x^2} - 2\left( {m - 1} \right)x + 4 < 0\).

  bởi Trịnh Lan Trinh 19/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bất phương trình (1) vô nghiệm tức là:

    \(\left( {m + 2} \right){x^2} - 2\left( {m - 1} \right)x + 4 \ge 0\) (2) với mọi \(x \in \mathbb{R}.\)

    +) Nếu \(m = -2\) thì bất phương trình (2) trở thành \(6x + 4 \ge 0\), không đúng với mọi \(x \in \mathbb{R}\).

    +) Nếu \(m \ne  - 2\) thì bất phương trình (2) đúng với mọi \(x \in \mathbb{R}\) khi và chỉ khi

    \(\begin{array}{l}\;\;\;\;\left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m + 2 > 0\\{\left( {m - 1} \right)^2} - 4\left( {m + 2} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m + 2 > 0\\{m^2} - 6m - 7 \le 0\end{array} \right.\end{array}\)

    \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m >  - 2\\-1\le m\le 7\end{array} \right.\\ \Leftrightarrow  -1\le m\le 7\end{array}\)

    Vậy \(m \in [-1;7]\).

      bởi sap sua 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF