OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {0;2} \right),B\left( {4;0} \right)\) và trọng tâm \(G\left( {\dfrac{7}{3};1} \right)\). Hãy xác định tọa độ đỉnh \(C\). Viết phương trình tổng quát của đường thẳng \(BC\).

Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {0;2} \right),B\left( {4;0} \right)\) và trọng tâm \(G\left( {\dfrac{7}{3};1} \right)\). Hãy xác định tọa độ đỉnh \(C\). Viết phương trình tổng quát của đường thẳng \(BC\).

  bởi A La 16/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)

    \(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\dfrac{7}{3} = \dfrac{{0 + 4 + {x_C}}}{3}\\1 = \dfrac{{2 + 0 + {y_C}}}{3}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}7 = 4 + {x_C}\\3 = 2 + {y_C}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = 1\end{array} \right.\\ \Rightarrow C\left( {3;1} \right)\end{array}\)

    Ta có: \(\overrightarrow {BC}  = \left( { - 1;1} \right)\).

    Đường thẳng \(BC\) nhận \(\overrightarrow {BC}  = \left( { - 1;1} \right)\) làm VTCP nên nhận \(\overrightarrow n  = \left( {1;1} \right)\) làm VTPT.

    \(BC\) đi qua \(B\left( {4;0} \right)\) nên có phương trình:

    \(1\left( {x - 4} \right) + 1\left( {y - 0} \right) = 0\) \( \Leftrightarrow x + y - 4 = 0\).

    Vậy \(C\left( {3;1} \right)\) và \(BC:x + y - 4 = 0\).

      bởi hành thư 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF