OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang OABC (O là gốc tọa độ) có diện tích bằng 6

Em sẽ rất biết ơn ai giải giúp em bài này!

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang OABC (O là gốc tọa độ) có diện tích bằng 6, OA song song với BC, đỉnh A(-1; 2), đỉnh B thuộc đường thẳng (d1): x + y + 1 = 0, đỉnh C thuộc đường thẳng (d2): 3x + y + 2 = 0. Tìm tọa độ các đỉnh B, C.

  bởi Lan Ha 07/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • OA: 2x + y = 0.

    OA || BC ⇒ BC: 2x + y + m = 0 (\(m\neq 0\)).

    Tọa độ điểm B là nghiệm của hệ

    \(\left\{\begin{matrix} x+y+1=0\\ 2x+y+m=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1-m\\ y=m-2 \end{matrix}\right.\Rightarrow B(1-m;m-2).\)

    Tọa độ điểm C là nghiệm của hệ

    \(\left\{\begin{matrix} 3x+y+2=0\\ 2x+y+m=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=m-2\\ y=4-3m \end{matrix}\right.\Rightarrow C(m-2;4-3m).\)

    \(S_{OABC}=\frac{1}{2}(OA+BC).d(O,BC)\)

    \(\Leftrightarrow \frac{1}{2}\left [ \sqrt{(-1)^{2}+2^{2}}+\sqrt{(2m-3)^{2}+(4m-6)^{2}} \right ].\frac{\left | m \right |}{\sqrt{2^{2}+1^{2}}}=6\)

    \(\Leftrightarrow (\left | 2m-3 \right |+1)\left | m \right |=12.\) Giải pt này bằng cách chia trường hợp để phá dấu giá trị tuyệt đối ta được \(m=1-\sqrt{7};m=3.\) Vậy \(B(\sqrt{7};-1-\sqrt{7}),C(-1-\sqrt{7};1+3\sqrt{7})\) hoặc \(B(-2;1),C(1;-5)\)

      bởi My Le 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF