OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong mặt phẳng Oxy, cho tam giác ABC với \(A(2;4);B(3;1);C( - 1;1)\). Tìm tọa độ trọng tâm G, trực tâm H, tâm I của đường tròn ngoại tiếp tam giác ABC.

  bởi Nguyễn Hiền 21/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(A(2;4),B(3;1),C( - 1;1)\)

    Tọa độ trọng tâm G của tam giác ABC là: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3} = \dfrac{4}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3} = 2\end{array} \right.\)

    Vậy \(G\left( {\dfrac{4}{3};2} \right)\)

    *Gọi H(x; y), ta có:

    \(\overrightarrow {AB}  = (1; - 3);\overrightarrow {BC}  = ( - 4;0)\);\(\overrightarrow {CH}  = (x + 1;y - 1);\)\(\overrightarrow {AH}  = (x - 2;y - 4)\)

    H là trực tâm tam giác ABC \( \Leftrightarrow \left\{ \begin{array}{l}AH \bot BC\\CH \bot AB\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {CH} .\overrightarrow {AB}  = 0\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l} - 4(x - 2) +0(y-4)= 0\\(x + 1) - 3(y - 1) = 0\end{array} \right. \)

    \( \Leftrightarrow \left\{ \begin{array}{l}
    x - 2 = 0\\
    x - 3y + 4 = 0
    \end{array} \right.\)

    \(\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\)

    *Gọi I(x; y), I là tâm đường tròn ngoại tiếp tam giác ABC \( \Leftrightarrow IA = IB = IC\)

    \( \Leftrightarrow \left\{ \begin{array}{l}
    AI = BI\\
    BI = CI
    \end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
    \sqrt {{{\left( {x - 2} \right)}^2} + {{\left( {y - 4} \right)}^2}} = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2}} \\
    \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2}} = \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y - 1} \right)}^2}}
    \end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l}{(x - 2)^2} + {(y - 4)^2} = {(x - 3)^2} + {(y - 1)^2}\\{(x - 3)^2} + {(y - 1)^2} = {(x + 1)^2} + {(y - 1)^2}\end{array} \right.\)

    \(\begin{array}{l}
    \Leftrightarrow \left\{ \begin{array}{l}
    {\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
    {\left( {x - 3} \right)^2} = {\left( {x + 1} \right)^2}
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    {\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
    {x^2} - 6x + 9 = {x^2} + 2x + 1
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    {\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
    - 8x = - 8
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    {\left( {1 - 2} \right)^2} + {\left( {y - 4} \right)^2} = {\left( {1 - 3} \right)^2} + {\left( {y - 1} \right)^2}\\
    x = 1
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    1 + {y^2} - 8y + 16 = 4 + {y^2} - 2y + 1\\
    x = 1
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    - 6y = - 12\\
    x = 1
    \end{array} \right.
    \end{array}\)

    \( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

    Vậy: I(1; 2)

      bởi Nguyễn Lệ Diễm 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF