Trong mặt phẳng Oxy cho bốn điểm \(A(3;4),B(4;1),C(2; - 3),D( - 1;6)\). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.
Câu trả lời (1)
-
Theo giả thiết ta có:
\(\overrightarrow {AB} = (1; - 3),\overrightarrow {AD} = ( - 4;2),\)\(\overrightarrow {CB} = (2;4);\overrightarrow {CD} = ( - 3;9)\)
Do đó \(\cos (\overrightarrow {AB} ,\overrightarrow {AD} ) = \dfrac{{\overrightarrow {AB} .\overrightarrow {AD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|}}\)\( = \dfrac{{1.( - 4) + ( - 3).2}}{{\sqrt {1 + 9} .\sqrt {16 + 4} }} = \dfrac{{ - 10}}{{\sqrt {200} }} = - \dfrac{1}{{\sqrt 2 }}\)
\(\cos (\overrightarrow {CB} ,\overrightarrow {AD} ) = \dfrac{{\overrightarrow {CB} .\overrightarrow {CD} }}{{\left| {\overrightarrow {CB} } \right|.\left| {\overrightarrow {CD} } \right|}}\)\( = \dfrac{{2.( - 3) + 4.9}}{{\sqrt {4 + 16} .\sqrt {9 + 81} }} = \dfrac{{30}}{{\sqrt {1800} }} = \dfrac{1}{{\sqrt 2 }}\)
Vì \(\cos (\overrightarrow {AB} ,\overrightarrow {AD} ) = - \cos (\overrightarrow {CB} ,\overrightarrow {CD} )\) nên hai góc này bù nhau.
Vậy tứ giác ABCD nội tiếp được trong một đường tròn.
bởi Nguyễn Thị Thanh
22/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời


