Tìm x, biết |2x-3|+x=5
1. tìm x
a) |2x-3|+x=5
b) 3x-2+2|x+3|=0
c ) 5x-1-3|2x-6|=0
2. cho a=5x+3-2|2x-1|
a ) rút gọn A
b ) tính giá trị của Akhi x=2 ; x= -2
c ) tìm x để A có giá trị = 0
3. tìm giá trị nhỏ nhất của các biểu thức
A= |x|+|8-x|
B= |x-2|+|5-x|
cách viết giá trị tuyệt đối nè gõ shift cùng dấu \ ( nhấn cùng lúc )
Câu trả lời (1)
-
1. a, | 2x - 3 | + x = 5
<=> | 2x - 3| = 5 - x
<=> \(\left[{}\begin{matrix}2x-3=5-x\\2x-3=-5+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=8\Rightarrow x=\dfrac{8}{3}\\x=-2\end{matrix}\right.\)
b, 3x - 2 +2| x + 3| = 0
Với x \(\ge1\) có:
3x - 2 + 2x + 6 = 0
<=> 5x = -4
<=> \(x=-\dfrac{4}{5}\)
Với x < 1 có:
-3x - 2 - 2x + 6 = 0
<=> -5x = -4
<=> x = \(\dfrac{4}{5}\) thử lại k thỏa mãn
Vậy có 1 gt x tm đề là x = -4/5
c, Tương tự b
Bài 2: gần tương tự bài 1
Bài 3:
a, Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)
đẳng thắc xảy ra khi \(0\le x\le8\)
Vậy A_min = 8 khi.....
b, Áp dụng bđt như ý a ta có:
\(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
đẳng thức xảy ra khi \(2\le x\le5\)
Vậy...............
bởi Nguyễn Thị Hoài Thương 05/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời