OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm phương trình của tập hợp các điểm cách đều hai đường thằng: \({\Delta _1}:5x + 3y - 3 = 0\) và \({\Delta _2}:5x + 3y + 7 = 0\).

  bởi Anh Nguyễn 21/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(M\left( {x;y} \right)\) là điểm bất kì thuộc đường thẳng cách đều hai đường thẳng đã cho.

    Khi đó \(d(M,{\Delta _1}) = d(M,{\Delta _2})\)\( \Leftrightarrow \dfrac{{\left| {5x + 3y - 3} \right|}}{{\sqrt {25 + 9} }} = \dfrac{{\left| {5x + 3y + 7} \right|}}{{\sqrt {25 + 9} }}\)

    \( \Leftrightarrow 5x + 3y - 3 =  \pm \left( {5x + 3y + 7} \right)\) \( \Leftrightarrow \left[ \begin{array}{l}5x + 3y - 3 = 5x + 3y + 7\\5x + 3y - 3 =  - \left( {5x + 3y + 7} \right)\end{array} \right.\)

    \( \Leftrightarrow 5x + 3y + 2 = 0\).

      bởi Tieu Giao 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF