OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm min của A=1/căn bậc 3(a+7b)+1/căn bậc 3(b+7c)+...

Cho a,b,c dương và tổng a, b, c là 3 .

Tìm MinA = \(\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\)

  bởi Nguyễn Bảo Trâm 07/11/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Áp dụng BĐT Côsi-Shaw ta có :

    \(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)

    Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)

    Ta sẽ có : \(\dfrac{9}{B}\)

    Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .

    Áp dụng BĐT Cô si , ta có :

    \(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )

    Tương tự , ta có :

    \(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)

    \(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)

    Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :

    \(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)

    \(\Leftrightarrow4B\le24\)

    \(\Leftrightarrow B\le6\)

    Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)

    Dấu " = " xảy ra khi \(a=b=c=1.\)

    Sai thôi nha leuleu

      bởi Lương Linh 07/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF