OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm max của P=1/(2a+b+c)^2 +1(2b+a+c)^2 +1/(2c+a+b)^2

cho các số thực dương a,b,c thay đổi luôn thỏa mãn 1/a2 + 1/b2 + 1/c2 =3.Tìm Max P = 1/(2a+b+c)2 +1(2b+a+c)2 +1/(2c+a+b)2

  bởi Việt Long 15/11/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Lời giải:

    Áp dụng BĐT AM-GM:

    \((2a+b+c)^2=\frac{8}{9}(a+b+c)^2+\frac{(a+b+c)^2}{9}+a^2+2a(a+b+c)\)

    \(\geq \frac{8}{9}(a+b+c)^2+\frac{2}{3}a(a+b+c)+2a(a+b+c)=\frac{8(a+b+c)^2}{9}+\frac{8a(a+b+c)}{3}\)

    Do đó \(\frac{1}{(2a+b+c)^2}\leq \frac{9}{8(a+b+c)(4a+b+c)}\). Thực hiện tương tự với các phân thức còn lại:

    \(\Rightarrow P\leq \frac{9}{8}.\frac{1}{a+b+c} \left(\frac{1}{4a+b+c}+\frac{1}{4b+a+c}+\frac{1}{4c+a+b} \right)\)

    Áp dụng BĐT Cauchy-Schwarz:

    \(\frac{1}{4a+b+c}\leq \frac{1}{36}\left (\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\) cùng với những phân thức tương tự

    \(\frac{1}{a+b+c}\leq \frac{1}{9}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

    Suy ra \(P\leq \frac{1}{8}\left (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\frac{1}{36}\left (\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)

    Mặt khác theo hệ quả của BĐT AM-GM:

    \(3=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{1}{3}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 3\)

    Suy ra \(P\leq \frac{3}{16}\). Dấu bằng xảy ra khi \(a=b=c=1\)

      bởi phan thị đoan phụng 15/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF