Tìm m để tập xác định của hàm số y=(x+m)/(2x^2+4x+m-3) là R
Tập xác định của hàm số: \(y=\dfrac{x+m}{2x^2+4x+m-3}\) là R khi nào
Câu trả lời (1)
-
ta có tập xác định của hàm số : \(y=\dfrac{x+m}{2x^2+4x+m-3}\) là \(R\)
khi \(2x^2+4x+m-3\) luôn khác không
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+4x+m-3>0\\2x^2+4x+m-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\left(x^2+2x\right)+m-3>0\\2\left(x^2+2x\right)+m-3< 0\end{matrix}\right.\)
(*) ta có : \(2\left(x^2+2x\right)+m-3>0\Leftrightarrow2\left(x^2+2x+1\right)+m-5>0\)
\(\Leftrightarrow2\left(x+1\right)^2+m-5>0\) điều này luôn đúng khi \(m-5>0\Leftrightarrow m>5\)
(*) ta có : \(2\left(x^2+2x\right)+m-3< 0\Leftrightarrow2\left(x^2+2x+1\right)+m-5< 0\)
\(\Leftrightarrow2\left(x+1\right)^2+m-5< 0\) điều này không thể luôn đúng vì \(2\left(x+1\right)^2\ge0\) với mọi \(x\)
\(\Rightarrow2\left(x+1\right)^2+m-5\) có m biến đổi theo chiều âm thì \(x\) cũng đề có thể biến đổi theo để \(2\left(x+1\right)^2+m-5=0\)
vậy để tập xác định của hàm số \(y=\dfrac{x+m}{2x^2+4x+m-3}\) là \(R\) thì \(m>5\)
bởi Diệp Thiên
02/11/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



