OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m - 2 = 0\) có hai nghiệm phân biệt \({x_1},{\rm{ }}{x_2}\) thỏa mãn điều kiện \(x_1^2 + x_2^2 = 36\).

  bởi Bo Bo 19/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Điều kiện để phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m - 2 = 0\) có hai nghiệm phân biệt

    \(\left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ne 0\\5m - 1 > 0\end{array} \right.\)

    \(\Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m > \dfrac{1}{5}\end{array} \right.\)

    Khi đó \({x_1} + {x_2} = \dfrac{{2\left( {m + 1} \right)}}{{m - 1}},{\rm{ }}{{\rm{x}}_1}{x_2} = \dfrac{{m - 2}}{{m - 1}}\) .

    Suy ra \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \)\(\;= \dfrac{{4{{\left( {m + 1} \right)}^2}}}{{{{\left( {m - 1} \right)}^2}}} - \dfrac{{2\left( {m - 2} \right)}}{{m - 1}}\)\(\; = \dfrac{{2{m^2} + 14m}}{{{{\left( {m - 1} \right)}^2}}}\) .

    Do đó: \(x_1^2 + x_2^2 = 36 \Leftrightarrow \dfrac{{2{m^2} + 14m}}{{{{\left( {m - 1} \right)}^2}}} = 36\)

    \( \Leftrightarrow 17{m^2} - 43m + 18 = 0\)

    \(\Leftrightarrow \left[ \begin{array}{l}m = 2\\m = \dfrac{9}{{17}}\end{array} \right.\) (thỏa mãn điều kiện).

    Vậy các giá trị cần tìm là \(m = 2\) và \(m = \dfrac{9}{{17}}\).

      bởi Anh Tuyet 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF