OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để hệ pt x+my=m+1 và mx+y=3m-1 có nghiệm duy nhất

cho hệ phương trình x+my=m+1 mx+y=3m-1

tìm m để hệ phương trình có một nghiệm duy nhất (x,y)thõa mãn xy đại giá trị nhỏ nhất

  bởi Anh Nguyễn 07/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)

    Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :

    \(m\left(m+1-my\right)+y=3m-1\)

    \(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)

    Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.

    Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.

    Xét với \(m\ne1\)\(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)

    \(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)

    Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)

    Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được

    \(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)

    Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)

    Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)

    Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1

      bởi trần phan bảo ngọc 07/11/2018
    Like (2) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF