OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm GTNN, GTLN của A=căn(-x^2+2x+4)

Tìm giá trị nhỏ nhất, lớn nhất:


A= \(\sqrt{-x^2+2x+4}\)

B= \(\frac{1}{5+2\sqrt{6-x^2}}\)

  bởi Nguyễn Thanh Thảo 05/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a. Ta có: \(A=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)

    Vậy giá trị lớn nhất của A là \(\sqrt{5}\). Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\).

    \(A=\sqrt{-x^2+2x+4}\ge0\)

    Vậy giá trị nhỏ nhất của A là 0. Dấu "=" xảy ra khi \(-x^2+2x+4=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\).

    b. \(B=\dfrac{1}{5+2\sqrt{6-x^2}}\)

    Ta có: \(\sqrt{6-x^2}\ge0\)

    \(\Leftrightarrow2\sqrt{6-x^2}\ge0\)

    \(\Leftrightarrow5+2\sqrt{6-x^2}\ge5\)

    \(\Leftrightarrow\dfrac{1}{5+2\sqrt{6-x^2}}\le\dfrac{1}{5}\)

    Vậy giá trị lớn nhất của B là \(\dfrac{1}{5}\). Dấu "=" xảy ra khi \(6-x^2=0\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\).

    Ta có:\(6-x^2\le6\)

    \(\Leftrightarrow\sqrt{6-x^2}\le\sqrt{6}\)

    \(\Leftrightarrow5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)

    \(\Leftrightarrow\dfrac{1}{5+2\sqrt{6-x^2}}\ge\dfrac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)

    Vậy giá trị nhỏ nhất của B là \(5-2\sqrt{6}\). Dấu "=" xảy ra khi \(6-x^2=6\Rightarrow x=0\)

      bởi Nguyễn Tuyết Ngôn 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF