OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm GTNN của P=ab/c+bc/a+ca/b

Cho a,b,b là các số thực dương thỏa mãn a2+b2+c2=1. Tìm giá trị nhỏ nhất của biểu thức P= \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\)

  bởi Lê Gia Bảo 23/10/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Lời giải:

    Ta có:

    \(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{(ab)^2+(bc)^2+(ca)^2}{abc}\)

    Xét tử số:

    \(\text{TS}=(ab)^2+(bc)^2+(ca)^2\)

    \(\Rightarrow \text{TS}^2=a^4b^4+b^4c^4+c^4a^4+2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)\)

    Áp dụng BĐT AM-GM ta có:

    \(\left\{\begin{matrix} a^4b^4+b^4c^4\geq 2a^2b^4c^2\\ b^4c^4+c^4a^4\geq 2a^2b^2c^4\\ c^4a^4+a^4b^4\geq 2a^4b^2c^2\end{matrix}\right.\)

    Cộng theo vế và rút gọn:

    \(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

    Do đó:

    \(\text{TS}^2\geq 3(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

    \(\Rightarrow \text{TS}\geq \sqrt{3}abc\)

    \(\Rightarrow P\geq \sqrt{3}\)

    Vậy \(P_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

      bởi Nguyễn Linh 23/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF