OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị a và b để bất phương trình \((x - 2a + b - 1)(x + a - 2b + 1) \le 0\). Có tập nghiệm là đoạn [0;2].

  bởi Nguyễn Thị An 26/04/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Tập nghiệm của bất phương trình đã cho là đoạn \({\rm{[}}2a - b + 1; - a + 2b - 1]\)(nếu \(2a - b + 1 \le  - a + 2b - 1\)) hoặc là đoạn \({\rm{[}} - a + 2b - 1;2a - b + 1]\) (nếu \( - a + 2b - 1 \le 2a - b - 1\))

    Do đó để tập nghiệm của bất phương trình đã cho là đoạn [0;2], điều kiện cần và đủ là

    (1) \(\left\{ \begin{array}{l}2a - b + 1 = 2\\ - a + 2b - 1 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1}\end{array}} \right.\)

    hoặc (2) \(\left\{ \begin{array}{l}2a - b + 1 = 0\\ - a + 2b - 1 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \dfrac{1}{3}}\\{b = \dfrac{5}{3}}\end{array}} \right.\)

    Đáp số: \(\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1}\end{array}} \right.\) hoặc  \(\left\{ {\begin{array}{*{20}{c}}{a = \dfrac{1}{3}}\\{b = \dfrac{5}{3}}\end{array}} \right.\)

      bởi Mai Rừng 26/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF