OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị a, b, c để đồ thị hàm số \(y = a{x^2} + bx + c\) là đường Parabol có đỉnh \(I\left( {2; - 2} \right)\) và đi qua điểm \(A\left( {0;2} \right)\).

Tìm giá trị a, b, c để đồ thị hàm số \(y = a{x^2} + bx + c\) là đường Parabol có đỉnh \(I\left( {2; - 2} \right)\) và đi qua điểm \(A\left( {0;2} \right)\).

  bởi Nguyen Nhan 14/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Đồ thị hàm số \(y = a{x^2} + bx + c\) có đỉnh \(I\left( { - \dfrac{b}{{2{\rm{a}}}}; - \dfrac{\Delta }{{4{\rm{a}}}}} \right)\) nên ta có:

    \(\left\{ \begin{array}{l} - \dfrac{b}{{2{\rm{a}}}} = 2\\ - 2 = a{.2^2} + b.2 + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 4{\rm{a}}\\4{\rm{a}} + 2b + c =  - 2\end{array} \right.\left( 1 \right)\)

    \(A\left( {0;2} \right)\) thuộc đồ thị nên \(c = 2\). Thay vào (1) ta được:

    \(\left\{ \begin{array}{l}b + 4{\rm{a}} = 0\\4{\rm{a}} + 2b =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 4\end{array} \right.\).

    Vậy \(a = 1,b =  - 4,c = 2\)

      bởi Mai Trang 15/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF