OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm các giá trị tham số của m để bất phương trình \( - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\) nghiệm đúng với mọi số thực x.

Tìm các giá trị tham số của m để bất phương trình \( - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\) nghiệm đúng với mọi số thực x.

  bởi Kim Xuyen 16/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(\begin{array}{l} - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\\ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le \frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}}\\\frac{{{x^2} - 2x - m}}{{{x^2} + 2x + 2019}} < 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - {x^2} - 2x - 2019 \le {x^2} - 2x - m\\{x^2} - 2x - m < 2{x^2} + 4x + 4038\end{array} \right.\\\left( {do\,\,{x^2} + 2x + 2019 > 0\,\,\forall x \in \mathbb{R}} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}2{x^2} + 2019 - m \ge 0\,\,\,\,\,(1)\\{x^2} + 6x + m + 4038 > 0\,\,\,\,\,(2)\end{array} \right.\end{array}\)

    Để bất phương trình nghiệm đúng với mọi số thực \(x\,\, \Leftrightarrow \) (1) và (2) nghiệm đúng với mọi số thực \(x\)

    \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\Delta _1} \le 0\\{\Delta _2} < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 2\left( {2019 - m} \right) \le 0\\9 - \left( {m + 4038} \right) < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2019 - m \ge 0\\ - 4029 - m < 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \le 2019\\m >  - 4029\end{array} \right.\\ \Leftrightarrow  - 4029 < m \le 2019.\end{array}\)

    Vậy với \( - 4029 < m \le 2019\) thỏa mãn yêu cầu đề bài.

      bởi Lê Tấn Thanh 16/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF