Thực hiện tính \(\sin2a, \cos2a, \tan2a\), biết rằng: \(\displaystyle \sin a + \cos a = {1 \over 2}\) và \(\dfrac{\pi }{2} < a < \dfrac{{3\pi }}{4}\)
Câu trả lời (1)
-
\(\begin{array}{l}{\left( {\sin a + \cos a} \right)^2}\\ = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a\\ = 1 + \sin 2a\\ \Rightarrow \sin 2a = {\left( {\sin a + \cos a} \right)^2} - 1\\ = {\left( {\dfrac{1}{2}} \right)^2} - 1 = - \dfrac{3}{4}\\ \Rightarrow \sin 2a = - \dfrac{3}{4}\end{array}\)
Mà
\(\begin{array}{l}{\sin ^2}2a + {\cos ^2}2a = 1\\ \Rightarrow {\cos ^2}2a = 1 - {\sin ^2}2a\\ = 1 - {\left( { - \dfrac{3}{4}} \right)^2} = \dfrac{7}{{16}}\end{array}\)
Lại có \(\dfrac{\pi }{2} < a < \dfrac{{3\pi }}{4}\) \( \Rightarrow \pi < 2a < \dfrac{{3\pi }}{2}\) \( \Rightarrow \cos 2a < 0\)
\( \Rightarrow \cos 2a = - \sqrt {\dfrac{7}{{16}}} = - \dfrac{{\sqrt 7 }}{4}\)
\( \Rightarrow \tan 2a = \dfrac{{\sin 2a}}{{\cos 2a}}\) \( = \left( { - \dfrac{3}{4}} \right):\left( { - \dfrac{{\sqrt 7 }}{4}} \right) = \dfrac{3}{{\sqrt 7 }}\)
bởi lê Phương 30/08/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời