OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Một hình bình hành có hai đường thẳng chứa hai cạnh có phương trình là \(5x + 2y + 6 = 0\) và \(3x - y - 3 = 0\) và một đỉnh là \(A\left( { - 1;4} \right)\) . Tìm tọa độ các đỉnh còn lại nữa của hình bình hành đó.

  bởi Meo Thi 19/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Nhận xét điểm \(A\left( {1;4} \right)\)  không thuộc hai đường thẳng đã cho. Suy ra đỉnh C của hình bình hành là giao điểm của hai đường thẳng đã cho nên có tọa độ thỏa mãn hệ

    \(\left\{ \matrix{  5x + 2y + 6 = 0 \hfill \cr  3x - y - 3 = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 0 \hfill \cr  y =  - 3 \hfill \cr}  \right.\)

    Phương trình các cạnh còn lại của hình bình hành

    \(5\left( {x + 1} \right) + 2\left( {y - 4} \right) = 0\)

    \(\Leftrightarrow 5x + 2y - 3 = 0\).

    \(3\left( {x + 1} \right) - \left( {y - 4} \right) = 0 \)

    \(\Leftrightarrow 3x - y + 7 = 0\).

     

    Tọa độ các đỉnh còn lại thỏa mãn các hệ

    \(\left\{ \matrix{  5x + 2y + 6 = 0 \hfill \cr  3x - y + 7 = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x =  - {{20} \over {11}} \hfill \cr  y = {{17} \over {11}} \hfill \cr}  \right.\)

    \(\left\{ \matrix{  3x - y - 3 = 0 \hfill \cr  5x + 2y - 3 = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = {9 \over {11}} \hfill \cr  y =  - {6 \over {11}} \hfill \cr}  \right.\)

    Vậy các đỉnh còn lại của hình bình hành là \(\left( {0; - 3} \right),\left( { - \dfrac{{20}}{{11}};\dfrac{{17}}{{11}}} \right),\left( {\dfrac{9}{{11}}; - \dfrac{6}{{11}}} \right).\)

      bởi Mai Thuy 20/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF