Giải phương trình sau: \(\left| {x + \sqrt {1 - {x^2}} } \right| = - \sqrt 2 \left( {2{{ {x}}^2} - 1} \right)\)
Câu trả lời (1)
-
\(x \in \left\{ { - \dfrac{{\sqrt 2 }}{2};\dfrac{1}{4}\left( {\sqrt 6 - \sqrt 2 } \right)} \right\}\).
Hướng dẫn. Nếu \(x\) nghiệm đúng phương trình thì \( - \dfrac{1}{{\sqrt 2 }} \le x \le \dfrac{1}{{\sqrt 2 }}\) nên \(\sqrt {1 - {x^2}} \ge \left| x \right|,\) nghĩa là \(x + \sqrt {1 - {x^2}} \ge 0.\)
Vậy ta có thể giả thiết \(x \le \dfrac{1}{{\sqrt 2 }}\) và phương trình trở thành :
\(x + \sqrt {1 - {x^2}} = \sqrt 2 \left( {1 - 2{{ {x}}^2}} \right).\)
Mặt khác \(1 - 2{{ {x}}^2} = \left( {\sqrt {1 - {x^2}} + { {x}}} \right)\left( {\sqrt {1 - {x^2}} - x} \right),\) nên ta có thể đưa phương trình đã cho về :
\(\left( {{ {x}} + \sqrt {1 - {x^2}} } \right)\left( {\sqrt {1 - {x^2}} - x - \dfrac{1}{{\sqrt 2 }}} \right) = 0.\)
bởi Bin Nguyễn
22/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời


