OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ pt x^3+1=2(x^2-x+y) và y^3+1=2(y^2-y+x)

Giải hệ phương trình :

     \(\begin{cases}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{cases}\)  (*)

  bởi hi hi 06/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Từ phương trình ban đầu ta có :

          \(\begin{cases}x^3-2x^2+2x+1=2y\\y^3-2y^2+2y+1=2x\end{cases}\)  \(\Leftrightarrow\begin{cases}f\left(x\right)=2y\\f\left(y\right)=2x\end{cases}\) với \(f\left(t\right)=t^3-2t^2+2t+1\)

    Ta có \(f'\left(t\right)=3t^2-4t+2>0\), với mọi \(t\in R\) nên f đồng biến trên R

    * Nếu \(x>y\Rightarrow2x>2y\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y>x\) (Mâu thuẫn)

    * Nếu \(x< y\Rightarrow2x< 2y\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y< x\) (Mâu thuẫn)

    * Vậy \(x=y\) , ta có hệ phương trình ban đầu tương đương :

    \(\begin{cases}x=y\\x^3-2x^2+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=y\\x\in\left\{1;\frac{1\pm\sqrt{5}}{2}\right\}\end{cases}\)

    Vậy hệ phương trình đã cho có nghiệm :

    \(\left(x;y\right)=\left(1;1\right);\left(\frac{1+\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1-\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\)

      bởi Ngô Thị Diệu Ngân 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF