Giải hệ phương trình sau \(\left\{\begin{matrix} xy^2+2=(2y^2-x)\sqrt{x^2+4y^2-3}
Giải hệ phương trình sau \(\left\{\begin{matrix} xy^2+2=(2y^2-x)\sqrt{x^2+4y^2-3}\\ (y-x)(y+1)+(y^2-2)\sqrt{x+1}=1 \end{matrix}\right.(x,y\in R, y\geq 0)\)
Câu trả lời (1)
-
ĐK: \(x^2+4y^2\geq 3,x\geq -1\)
Phương trình hai của hệ được viết lại thành
\((2)\Leftrightarrow y^2-xy+y-x+y^2\sqrt{x+1}-2\sqrt{x+1}=1\)
\(\Leftrightarrow y^2\sqrt{x+1}+y^2+2y+2y\sqrt{x+1}=xy+y+x+1+2\sqrt{x+1}+2y\sqrt{x+1}\)
\(\Leftrightarrow (y^2+2y)(\sqrt{x+1}+1)=(y+1)(x+1)+(y+1)2\sqrt{x+1}\)
\(\Leftrightarrow (y^2+2y)(\sqrt{x+1}+1)=(y+1)(x+1+2\sqrt{x+1})\)
\(\Leftrightarrow \left [ (y+1)^2-1\right ](\sqrt{x+1}+1)=(y+1)\left [ (\sqrt{x+1}+1)^2-1 \right ]\)
\(\Leftrightarrow y+1-\frac{1}{y+1}=\sqrt{x+1}+1-\frac{1}{\sqrt{x+1}+1}\)
Xét hàm số \(f(t)=t-\frac{1}{t}\). Chứng minh được hàm f (t) đồng biến trên khoảng xác định \((0;+\infty )\). Suy ra \(y =\sqrt{ x+1}\)
Thay vào (1), ta có:
\(x(x+1)+2=(x+2)\sqrt{x^2+4x+1}\)
\(\Leftrightarrow x^2+x+2=(x+2)\sqrt{x^2+4x+1}\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \sqrt{3}-2\\ (x^2+x+2)^2=(x+2)^2(x^2+4x+1) \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \sqrt{3}-2\\ 6x^3+16x^2+16x=0 \end{matrix}\right.\)
\(\Leftrightarrow x=0\)
Suy ra hệ có nghiệm (x; y) = (0;1)bởi Thanh Nguyên
09/02/2017
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời


