OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ phương trình \(\left\{\begin{matrix} (x+\sqrt{x^2+4})(y+\sqrt{y^2+1})=2\\ 12y^2-10y+2=2\sqrt[3]{x^3+1} \end{matrix}\right.(x,y\in Z)\)

Em sẽ rất biết ơn ai giải giúp em bài này!

Giải hệ phương trình \(\left\{\begin{matrix} (x+\sqrt{x^2+4})(y+\sqrt{y^2+1})=2\\ 12y^2-10y+2=2\sqrt[3]{x^3+1} \end{matrix}\right.(x,y\in Z)\)

  bởi Cam Ngan 08/02/2017
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(\left\{\begin{matrix} (x+\sqrt{x^2+4})(y+\sqrt{y^2+1}) \ \ (1)\\ 12y^2-10y+2=2\sqrt[3]{x^3+1} \ \ \ \ (2) \end{matrix}\right.\)
    Ta có: (1)\(\Leftrightarrow x+\sqrt{x^2+4}=\sqrt{(-2y)^2+4}+(-2y) \ (*)\)

    Xét hàm số đặc trưng 
    \(f(t)=\sqrt{t^2+4}+t\Rightarrow f'(t)=\frac{t}{\sqrt{t^2+4}}+1=\frac{1+\sqrt{t^2+4}}{\sqrt{t^2+4}}>\frac{t+\left | t \right |}{\sqrt{t^2+4}}\geq 0\)
    Suy ra f(t) là hàm số đồng biến trên R. Từ (*) suy ra: 
    \(f(x)=f(-2y)\Rightarrow x=-2y\)
    Thay vào phương trình (2) ta được: 
    \(3x^2+5x+2=2\sqrt[3]{x^2+1}\)
    \(\Leftrightarrow (x+1)^3+2(x+1)=(x^3+1)+2\sqrt[3]{x^3+1}(**)\)
    Xét hàm số g(t) =t3 + 2t ta thấy g(t) đồng biến trên R nên từ (**) suy ra 
    \(x+1=\sqrt[3]{x^3+1}\Leftrightarrow \bigg \lbrack\begin{matrix} x=0\\ x=-1 \end{matrix}\)
    Vậy hệ có hai nghiệm là (-1;\(\frac{1}{2}\)); (0;0)

      bởi Phan Thiện Hải 09/02/2017
    Like (1) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF